How do you integrate int9/((x^2+9)(x+3)(x-3)) dx9(x2+9)(x+3)(x3)dx using partial fractions?

1 Answer
Jan 22, 2016

- 1 /6 arctan(x/3) - 1/12 ln abs(x+3) + 1/12 ln abs(x-3) + c16arctan(x3)112ln|x+3|+112ln|x3|+c

Explanation:

Your partial fraction decomposition can be computed as follows:

Find AA, BB, CC and DD so that

9 / ((x^2+9)(x+3)(x-3)) = (Ax + B)/(x^2+9) + C / (x+3) + D / (x-3)9(x2+9)(x+3)(x3)=Ax+Bx2+9+Cx+3+Dx3

====================================

To solve this equation for AA, BB, CC and DD, the first thing to do would be multiplying both sides with (x^2+9)(x+3)(x-3)(x2+9)(x+3)(x3):

9 = (Ax + B)(x+3)(x-3) + C(x^2+9)(x-3) + D(x^2+9)(x+3)9=(Ax+B)(x+3)(x3)+C(x2+9)(x3)+D(x2+9)(x+3)

... expand the terms...

9 = (Ax + B) (x^2 -9) + C (x^3 - 3x^2 + 9x - 27) + D(x^3 + 3x^2 + 9x + 27)9=(Ax+B)(x29)+C(x33x2+9x27)+D(x3+3x2+9x+27)

9 = Ax^3 + Bx^2 -9Ax - 9B + Cx^3 - 3Cx^2 + 9Cx - 27C + Dx^3 + 3Dx^2 + 9Dx + 27D9=Ax3+Bx29Ax9B+Cx33Cx2+9Cx27C+Dx3+3Dx2+9Dx+27D

... sort the color(red)(x^3)x3 terms, color(blue)(x^2)x2 terms, color(violet)(x)x terms and terms color(green)("without " x)without x...

color(red)(0 * x^3) + color(blue)(0 * x^2) + color(violet)(0 *x) + color(green)(9) = color(red)(Ax^3) + color(blue)(Bx^2) color(violet)(- 9Ax) color(green)(- 9B) + color(red)(Cx^3) color(blue)(- 3Cx^2) + color(violet)(9Cx) color(green)(- 27C) + color(red)(Dx^3) + color(blue)(3Dx^2) + color(violet)(9Dx) + color(green)(27D)0x3+0x2+0x+9=Ax3+Bx29Ax9B+Cx33Cx2+9Cx27C+Dx3+3Dx2+9Dx+27D

====================================

This equation can only hold if all the x^3x3 terms match, all the x^2x2 terms match, all the xx terms match and all the terms without xx match.

Thus, it can be split up into 44 equations:

{ ( (I) color(white)(xxx) 0 = color(white)(xx) A color(white)(xxxxxxi) + C color(white)(xxi)+ D color(white)(xxxxxxxx) color(red)(x^3) " terms" ), ( (II) color(white)(xx) 0 = color(white)(xxxxxx)B color(white)(xx)- 3C color(white)(xx) + 3D color(white)(xxxxxxiii) color(blue)(x^2) " terms" ), ( (III) color(white)(xii) 0 = -9A color(white)(xxxxxii) + 9C color(white)(xx)+ 9D color(white)(xxxxxxiii) color(violet)(x) " terms" ), ( (IV) color(white)(xx) 9 = color(white)(xxxx)-9B color(white)(x) -27C color(white)(x)+ 27D color(white)(xxx) color(green)("without " x )" terms") :}

First of all, let's divide the equations (III) and (IV) by 9:

{ ( (I) color(white)(xxx) 0 = color(white)(xx) A color(white)(xxxxxxi) + C color(white)(xxi)+ D ), ( (II) color(white)(xx) 0 = color(white)(xxxxxx)B color(white)(xx)- 3C color(white)(xx) + 3D), ( (III) color(white)(xii) 0 = -A color(white)(xxxxxxi) + C color(white)(xxi)+ D), ( (IV) color(white)(xx) 1 = color(white)(xxxx)-B color(white)(xx) -3C color(white)(xx)+ 3D) :}

(I) - (III) gives

0 = 2A " "=>" " A = 0

(II) - (IV) gives

-1 = 2B " "=>" " B = - 1 / 2

Inserting A = 0 in (I) and B = - 1 /2 in (II) gives:

{ ( (I') color(white)(xxx) 0 = color(white)(xx) C + D), ( (II') color(white)(xx) 1/2 = -3C + 3D):}

From (I') we know that C = -D. Inserting this into (II') gives

1/2 = 3D + 3D " " => " " D = 1/12

and finally, C = - 1 / 12.

====================================

Now that we have found A, B, C and D, we can apply the partial fraction decomposition and solve the integral:

int 9 / ((x^2+9)(x+3)(x-3)) "d" x

= int (-1/2 * 1 / (x^2 +9) - 1/12 * 1/(x+3) + 1/12 * 1 /(x-3)) "d"x

= -1/2 int 1 / (x^2 +9) "d"x - 1/12 int 1/(x+3) "d"x + 1/12 int 1 /(x-3) "d"x

Now, you need to compute three easier integrals instead of one complicated one.

====================================

Since

(arctan x)' = 1 / (x^2+1),

we know that

[1/3 arctan (x/3)] ' = 1/3 * 1 /((x/3)^2 + 1) = 1/(3 (x^2/9 + 3)) = 1 / (x^2 + 9).

Also, we know that

(ln abs(x+1))' = 1 / (x+1)

Thus, we can solve the integral as follows:

int 9 / ((x^2+9)(x+3)(x-3)) "d" x

= -1/2 int 1 / (x^2 +9) "d"x - 1/12 int 1/(x+3) "d"x + 1/12 int 1 /(x-3) "d"x

= - 1 /2 * 1 / 3 * arctan(x/3) - 1/12 ln abs(x+3) + 1/12 ln abs(x-3) + c

= - 1 /6 arctan(x/3) - 1/12 ln abs(x+3) + 1/12 ln abs(x-3) + c