How do you integrate x1x3+x using partial fractions?

1 Answer
Jan 8, 2017

Do a partial fraction expansion, check it, then integrate the terms.

Explanation:

Begin with the a partial fraction expansion:

x1x3+x=Ax+Bx+Cx2+1

x1=A(x2+1)+(Bx+C)x

x1=A(x2+1)+Bx2+Cx

To make B and C disappear, let x=0:

01=A(02+1)

A = -1

x+x2=Bx2+Cx

B=1
C=1

Check:

xx2+1xx+1x2+1xx1xx2+1x2+1

x2x(x2+1)+xx(x2+1)x2+1x(x2+1)

x1x(x2+1)

x1x3+x

This checks.

x1x3+xdx=xx2+1dx+1x2+1dx1xdx

x1x3+xdx=12ln(x2+1)+tan1(x)ln|x|+C