How do you integrate (x^2-1)/(x^2-16)x21x216 using partial fractions?

1 Answer
Dec 2, 2016

The answer is =x-15/8ln(∣x+4∣)+15/8ln(∣x-4∣)+C=x158ln(x+4)+158ln(x4)+C

Explanation:

Firstly

(x^2-1)/(x^2-16)=1+15/(x^2-16)x21x216=1+15x216

x^2-16=(x+4)(x-1)x216=(x+4)(x1)

Now we can do the decomposition in partial fractions

15/(x^2-16)=15/((x+4)(x-1))=A/(x+4)+B/(x-4)15x216=15(x+4)(x1)=Ax+4+Bx4

=(A(x-4)+B(x+4))/((x+4)(x-1))=A(x4)+B(x+4)(x+4)(x1)

Therefore,

15=A(x-4)+B(x+4)15=A(x4)+B(x+4)

Let x=4x=4, =>, 15=8B15=8B

B=15/8B=158

Let x=-4x=4, =>, 15=-8A15=8A

A=-15/8A=158

(x^2-1)/(x^2-16)=1-15/(8(x+4))+15/(8(x-4)x21x216=1158(x+4)+158(x4)

int((x^2-1)dx)/(x^2-16)=int1dx-int(15dx)/(8(x+4))+int(15dx)/(8(x-4)(x21)dxx216=1dx15dx8(x+4)+15dx8(x4)

=x-15/8ln(∣x+4∣)+15/8ln(∣x-4∣)+C=x158ln(x+4)+158ln(x4)+C