How do you integrate (x^2 + 1)/(x(x + 1)(x^2 + 2))x2+1x(x+1)(x2+2) using partial fractions?

1 Answer
Nov 18, 2017

int (x^2+1)/[x*(x+1)*(x^2+2)]*dxx2+1x(x+1)(x2+2)dx

=1/2*Lnx12lnx+sqrt2/6*arctan(x/sqrt2)26arctan(x2)+1/12*Ln(x^2+2)112ln(x2+2)-2/3*Ln(x+1)+C23ln(x+1)+C

Explanation:

I decomposed integrand into basic fractions,

(x^2+1)/[x*(x+1)*(x^2+2)]x2+1x(x+1)(x2+2)

=A/x+B/(x+1)+(Cx+D)/(x^2+2)Ax+Bx+1+Cx+Dx2+2

After expanding denominator,

A(x+1)(x^2+2)+Bx(x^2+2)+(Cx+D)x(x+1)=x^2+1A(x+1)(x2+2)+Bx(x2+2)+(Cx+D)x(x+1)=x2+1

A*(x^3+x^2+2x+2)+B*(x^3+2x)+(Cx+D)*(x^2+x)=x^2+1A(x3+x2+2x+2)+B(x3+2x)+(Cx+D)(x2+x)=x2+1

(A+B+C)*x^3+(A+C+D)*x^2+(2A+2B+D)*x+2A=x^2+1(A+B+C)x3+(A+C+D)x2+(2A+2B+D)x+2A=x2+1

After equating coefficients,

A+B+C=0A+B+C=0, A+C+D=1A+C+D=1, 2A+2B+D=02A+2B+D=0 and 2A=12A=1

From these equations, A=1/2, B=-2/3, C=1/6 and D=1/3A=12,B=23,C=16andD=13

Thus,

int (x^2+1)/[x*(x+1)*(x^2+2)]*dxx2+1x(x+1)(x2+2)dx

=1/2*int (dx)/x-2/3*int (dx)/(x+1)+1/6*int ((x+2)*dx)/(x^2+2)12dxx23dxx+1+16(x+2)dxx2+2

=1/2*Lnx-2/3*Ln(x+1)+1/12*int ((2x+4)*dx)/(x^2+2)12lnx23ln(x+1)+112(2x+4)dxx2+2

=1/2*Lnx-2/3*Ln(x+1)+1/12*int (2x*dx)/(x^2+2)+1/3*int (dx)/(x^2+2)12lnx23ln(x+1)+1122xdxx2+2+13dxx2+2

=1/2*Lnx-2/3*Ln(x+1)+1/12*Ln(x^2+2)+sqrt2/6*int (sqrt2*dx)/(x^2+2)12lnx23ln(x+1)+112ln(x2+2)+262dxx2+2

=1/2*Lnx-2/3*Ln(x+1)+1/12*Ln(x^2+2)+sqrt2/6*arctan(x/sqrt2)+C12lnx23ln(x+1)+112ln(x2+2)+26arctan(x2)+C