How do you integrate (x^2+1)/(x(x^2-1)) using partial fractions?

1 Answer
Jan 25, 2017

The answer is =-ln(|x|)+ln(|x+1|)+ln(|x-1|)+C

Explanation:

Let's factorise the denominator

x(x^2-1)=x(x+1)(x-1)

So, let's do the decomposition into partial fractions

(x^2+1)/(x(x^2-1))=(x^2+1)/(x(x+1)(x-1))

=A/x+B/(x+1)+C/(x-1)

=(A(x+1)(x-1)+B(x)(x-1)+C(x)(x+1))/(x(x+1)(x-1))

The denominators are the same, so, we can equalise the numerators

x^2+1=A(x+1)(x-1)+B(x)(x-1)+C(x)(x+1)

Let x=0, =>, 1=-A, =>, A=-1

Let x=-1, =>, 2=2B, =>, B=1

Let x=1, =>, 2=2C, =>, C=1

Therefore,

(x^2+1)/(x(x^2-1))=-1/x+1/(x+1)+1/(x-1)

So, we can do the integration

int((x^2+1)dx)/(x(x^2-1))=-intdx/x+intdx/(x+1)+intdx/(x-1)

=-ln(|x|)+ln(|x+1|)+ln(|x-1|)+C