How do you integrate x^2/ [x^2+x+4] using partial fractions?

1 Answer
Nov 9, 2016

int frac{x^2}{x^2+x+4} "d"x

= x - 1/2 ln(x^2+x+4) + 7/sqrt15 tan^{-1}(frac{2x + 1}{sqrt15}) + c

where c is the constant of integration.

Explanation:

First, write out the partial fractions

frac{x^2}{x^2+x+4} = frac{x^2+(x+4) - (x+4)}{x^2+x+4}

= 1 - frac{x+4}{x^2+x+4}

Fractions of the form (f'(x))/f(x) integrate to become ln(f(x)). Therefore, suppose f(x) = x^2 + x +4, then

f'(x) = 2x + 1

Rewriting the partial fraction,

frac{x^2}{x^2+x+4} = 1 - 1/2 frac{2(x+4)}{x^2+x+4}

= 1 - 1/2 frac{2x+8}{x^2+x+4}

= 1 - 1/2 frac{2x+1}{x^2+x+4} + frac{7}{2} frac{1}{x^2+x+4}

The last bit requires completing the square, as fractions of the form 1/((x-b)^2 +a^2) integrate to form 1/a tan^{-1}((x-b)/a).

x^2 + x + 4 = (x + 1/2)^2 + 15/4

Rewriting the partial fraction,

frac{x^2}{x^2+x+4} = 1 - 1/2 frac{2x+1}{x^2+x+4} + frac{14}{(2x + 1)^2 + 15}

Now, performing the integration

int frac{x^2}{x^2+x+4} "d"x = int "d"x - 1/2 int frac{2x+1}{x^2+x+4} "d"x

+ 7/2 int frac{1}{(x + 1/2)^2 + 15/4} "d"x

= x - 1/2 ln(x^2+x+4) + 7/sqrt15 tan^{-1}(frac{2x + 1}{sqrt15}) + c

where c is the constant of integration.