How do you integrate (x^2+x)/((x+2)(x-1)^2)x2+x(x+2)(x1)2 using partial fractions?

1 Answer
Apr 8, 2016

int (x^2+x)/((x+2)(x-1)^2) dx =2/9 ln abs(x+2) + 7/9 ln abs(x-1) - 2/(3(x-1)) + Cx2+x(x+2)(x1)2dx=29ln|x+2|+79ln|x1|23(x1)+C

Explanation:

Since the denominator has already been factored for us, we can tell that we're looking for a partial fraction decomposition of the form:

(x^2+x)/((x+2)(x-1)^2)x2+x(x+2)(x1)2

=A/(x+2)+B/(x-1)+C/(x-1)^2=Ax+2+Bx1+C(x1)2

=(A(x-1)^2+B(x+2)(x-1)+C(x+2))/((x+2)(x-1)^2)=A(x1)2+B(x+2)(x1)+C(x+2)(x+2)(x1)2

=((A+B)x^2+(-2A+B+C)x+(A-2B+2C))/((x+2)(x-1)^2)=(A+B)x2+(2A+B+C)x+(A2B+2C)(x+2)(x1)2

Equating coefficients we get the following system of linear equations:

{ (A+B=1), (-2A+B+C=1), (A-2B+2C=0) :}

Adding all three equations together, we find:

3C = 2

So color(blue)(C=2/3)

Subtracting the second equation from the first, we have:

3A-C = 0

Hence color(blue)(A = 2/9)

Then from the first equation we find color(blue)(B=7/9)

So:

(x^2+x)/((x+2)(x-1)^2)=2/(9(x+2))+7/(9(x-1))+2/(3(x-1)^2)

Hence:

int (x^2+x)/((x+2)(x-1)^2) dx

=int 2/(9(x+2))+7/(9(x-1))+2/(3(x-1)^2) dx

=2/9 ln abs(x+2) + 7/9 ln abs(x-1) - 2/(3(x-1)) + C