How do you integrate (x+2) / (x(x-4))x+2x(x4) using partial fractions?

1 Answer

\color{red}{\int \frac{x+2}{x(x-4)}\ dx}=\color{blue}{-1/2\ln |x|+3/2\ln|x-4|+C

Explanation:

Let

\frac{x+2}{x(x-4)}=A/x+B/{x-4}

(A+B)x-4A=x+2

Comparing the corresponding coefficients on both the sides we get

A+B=1\ \ &\ \ -4A=2

Solving above equations we get

A=-1/2, B=3/2

Now, the partial fractions can be written as follows

\frac{x+2}{x(x-4)}=(-1/2)/x+(3/2)/{x-4}

=-1/{2x}+3/{2(x-4)}

\therefore \int \frac{x+2}{x(x-4)}\ dx

=\int (-1/{2x}+3/{2(x-4)})\ dx

=-1/2\int dx/x +3/2\int dx/{x-4}

=-1/2\ln |x|+3/2\ln|x-4|+C