How do you integrate (x^3-2x^2-4)/(x^3-2x^2) using partial fractions?

1 Answer
Oct 29, 2016

THe answer is =x-2/x+lnx-ln(x-2)+C

Explanation:

Let's start by rewriting the expression
(x^3-2x^2-4)/(x^3-2x^2)=1-4/(x^3-2x^2)=1-4/((x^2)(x-2))

So now we can apply the decomposition into partial fractions
1/((x^2)(x-2))=A/x^2+B/x+C/(x-2)
=(A(x-2)+Bx(x-2)+Cx^2)/((x^2)(x-2))
Solving for A,B and C

1=A(x-2)+Bx(x-2)+Cx^2
let x=2=>1=4C=>C=1/4
let x=0=>1=-2A=>A=-1/2
Coefficients of x^2=>0=B+C=>B=-1/4
so we have, 1/((x^2)(x-2))=-1/(2x^2)-1/(4x)+1/(4(x-2)
So 1-4/((x^2)(x-2))=1-2/(x^2)-1/(x)+1/(x-2)

int((x^3-2x^2-4)dx)/(x^3-2x^2)=int(1+2/(x^2)+1/(x)-1/(x-2))dx

=x-2/x+lnx-ln(x-2)+C