How do you integrate (x+7)/(x^2(x+2))x+7x2(x+2) using partial fractions?

1 Answer
Feb 8, 2017

The answer is =-7/(2x)-5/4ln(|x|)+5/4ln(|x+2|)+C=72x54ln(|x|)+54ln(|x+2|)+C

Explanation:

Let's perform the decomposition into partial fractions

(x+7)/(x^2(x+2))=A/(x^2)+B/(x)+C/(x+2)x+7x2(x+2)=Ax2+Bx+Cx+2

=(A(x+2)+B(x(x+2))+C(x^2))/(x^2(x+2))=A(x+2)+B(x(x+2))+C(x2)x2(x+2)

As the denominators are the same, we compare the numerators

x+7=A(x+2)+B(x(x+2))+C(x^2)x+7=A(x+2)+B(x(x+2))+C(x2)

Let A=0A=0, =>, 7=2A7=2A, =>, A=7/2A=72

Let x=-2x=2, =>, 5=4C5=4C, =>, C=5/4C=54

Coefficients of xx

1=A+2B1=A+2B, =>, 2B=1-A=1-7/2=-5/22B=1A=172=52

B=-5/4B=54

Therefore,

(x+7)/(x^2(x+2))=(7/2)/(x^2)+(-5/4)/(x)+(5/4)/(x+2)x+7x2(x+2)=72x2+54x+54x+2

So,

int((x+7)dx)/(x^2(x+2))=7/2intdx/(x^2)-5/4intdx/(x)+5/4intdx/(x+2)(x+7)dxx2(x+2)=72dxx254dxx+54dxx+2

=-7/(2x)-5/4ln(|x|)+5/4ln(|x+2|)+C=72x54ln(|x|)+54ln(|x+2|)+C