How do you integrate (x) / (x^(3)-x^(2)-2x +2) using partial fractions?

1 Answer

=\ln|\frac{\sqrt{x^2-2}}{x-1}|+1/{\sqrt2}\ln|\frac{x-\sqrt2}{x+\sqrt2}|+C

Explanation:

Making partial fractions as follows

\frac{x}{x^3-x^2-2x+2}

=\frac{x}{(x-1)(x^2-2)}

=A/(x-1)+{Bx+C}/{x^2-2}

Comparing corresponding coefficients on both sides we get

A=-1, B=1, C=2

Now,

\frac{x}{x^3-x^2-2x+2}=-1/{x-1}+{x+2}/{x^2-2}

Integrating above equation on both the sides w.r.t. x, we get

\int \frac{x}{x^3-x^2-2x+2}\ dx=\int (-1/{x-1}+{x+2}/{x^2-2})\ dx

=-\int 1/{x-1}\ dx+\int x/{x^2-2}\ dx+2\int 1/{x^2-2}\ dx

=-ln|x-1|+1/2\int {d(x^2-2)}/{x^2-2}\ dx+2\int 1/{x^2-(\sqrt2)^2}\ dx

=-ln|x-1|+1/2\ln|x^2-2|+2\cdot 1/{2\sqrt2}\ln|\frac{x-\sqrt2}{x+\sqrt2}|+C

=\ln|\frac{\sqrt{x^2-2}}{x-1}|+1/{\sqrt2}\ln|\frac{x-\sqrt2}{x+\sqrt2}|+C