Making partial fractions as follows
#\frac{x}{x^3-x^2-2x+2}#
#=\frac{x}{(x-1)(x^2-2)}#
#=A/(x-1)+{Bx+C}/{x^2-2}#
Comparing corresponding coefficients on both sides we get
#A=-1, B=1, C=2#
Now,
#\frac{x}{x^3-x^2-2x+2}=-1/{x-1}+{x+2}/{x^2-2}#
Integrating above equation on both the sides w.r.t. #x#, we get
#\int \frac{x}{x^3-x^2-2x+2}\ dx=\int (-1/{x-1}+{x+2}/{x^2-2})\ dx#
#=-\int 1/{x-1}\ dx+\int x/{x^2-2}\ dx+2\int 1/{x^2-2}\ dx#
#=-ln|x-1|+1/2\int {d(x^2-2)}/{x^2-2}\ dx+2\int 1/{x^2-(\sqrt2)^2}\ dx#
#=-ln|x-1|+1/2\ln|x^2-2|+2\cdot 1/{2\sqrt2}\ln|\frac{x-\sqrt2}{x+\sqrt2}|+C#
#=\ln|\frac{\sqrt{x^2-2}}{x-1}|+1/{\sqrt2}\ln|\frac{x-\sqrt2}{x+\sqrt2}|+C#