How do you integrate x/(x^3-x^2-6x)xx3−x2−6x using partial fractions?
1 Answer
Explanation:
Quick version
Note that both the numerator and denominator are divisible by
x/(x^3-x^2-6x) = 1/(x^2-x-6) = 1/((x-3)(x+2)) = 1/(5(x-3))-1/(5(x+2))xx3−x2−6x=1x2−x−6=1(x−3)(x+2)=15(x−3)−15(x+2)
So:
int x/(x^3-x^2-6x) dx = int 1/(5(x-3))-1/(5(x+2)) dx∫xx3−x2−6xdx=∫15(x−3)−15(x+2)dx
color(white)(int x/(x^3-x^2-6x) dx) = 1/5 ln abs(x-3)-1/5 ln abs(x+2) + C∫xx3−x2−6xdx=15ln|x−3|−15ln|x+2|+C
Notes
1/((x-3)(x+2)) = A/(x-3) + B/(x+2)1(x−3)(x+2)=Ax−3+Bx+2
color(white)(1/((x-3)(x+2))) = (A(x+2)+B(x-3))/((x-3)(x+2))1(x−3)(x+2)=A(x+2)+B(x−3)(x−3)(x+2)
color(white)(1/((x-3)(x+2))) = ((A+B)x+(2A-3B))/((x-3)(x+2))1(x−3)(x+2)=(A+B)x+(2A−3B)(x−3)(x+2)
Equating coefficients, we have:
{ (A+B = 0), (2A-3B = 1) :}
Adding
5A = 1
Hence
So:
1/((x-3)(x+2)) = 1/(5(x-3)) - 1/(5(x+2))
Alternatively, we could find
A = 1/(color(blue)(3)+2) = 1/5
B = 1/(color(blue)(-2)-3) = 1/(-5) = -1/5
The method I actually used was:
If
then when we express in terms of a common denominator we will need
If try
Hence