How do you multiply (1-2i)(-2-3i) (12i)(23i) in trigonometric form?

1 Answer
Dec 23, 2017

color(blue)((1-2i)(-2-3i) = -8+i)(12i)(23i)=8+i

Explanation:

Multiplication of Complex Numbers:

How do we multiply two complex numbers?

Assume that we want to multiply two complex numbers:

color(green)((a+bi)*(c+di))(a+bi)(c+di)

We can use the FOIL method to multiply:

Firsts: a * cac

Outers: a * diadi

Inners: bi * cbic

Lasts: bi * dibidi

Hence,

color(green)((a+bi)*(c+di)=ac+adi+bci+bdi^2)(a+bi)(c+di)=ac+adi+bci+bdi2

Now, we will consider our problem and multiply the complex numbers given to us:

color(blue)((1-2i)(-2-3i)(12i)(23i)

rArr [1 * (-2)] + [1 (-3i)] + [(-2i) (-2)] + [(-2i) * (-3i)][1(2)]+[1(3i)]+[(2i)(2)]+[(2i)(3i)]

rArr (-2) + (-3i) + (+4i) + (+6i^2)(2)+(3i)+(+4i)+(+6i2)

rArr (-2) + (+1i) + (6i^2)(2)+(+1i)+(6i2)

Note that color(red)(" "i^2 = -1) i2=1

Hence,

rArr (-2) + (+1i) + [6*(-1)](2)+(+1i)+[6(1)]

rArr (-2) + (+1i) + (-6)(2)+(+1i)+(6)

rArr (-8 +i)(8+i)

Hence, our intermediate answer:

color(blue)((1-2i)(-2-3i)=-8 +i(12i)(23i)=8+i

We also know that, in trigonometric form of complex numbers

Z = x + iyZ=x+iy

r = |Z| = sqrt(x ^ 2 + y ^2r=|Z|=x2+y2

x = r Cos (Theta)

y = r Sin (Theta)

Z = r[Cos(Theta) + i Sin(Theta)]

We will now calculatre

r = |Z| = sqrt(x ^ 2 + y ^2

rArr |Z| = sqrt(1^2 + (-8)^2)

rArr |Z| = sqrt(65)

Theta = arctan(-1/8)

Theta = -3.2659

We have, Z = r[Cos(Theta) + i Sin(Theta)]

Z = sqrt(65)[Cos(-3.2659) + i Sin(-3.2659)]

Hope this helps.