How do you multiply (1+7i)(-3+2i) (1+7i)(3+2i) in trigonometric form?

1 Answer
Nov 19, 2017

(1+7i)(-3+2i) ~~ 25.495 (cos 228.18+isin228.18)(1+7i)(3+2i)25.495(cos228.18+isin228.18)

Explanation:

Z= (1+7i)(-3+2i) = (-3+2i-21i+14i^2)Z=(1+7i)(3+2i)=(3+2i21i+14i2)

=-3-19i-14 = -17-19i [i^2= -1]=319i14=1719i[i2=1]

ZZ lies on 3rd3rd quadrant

Modulus |Z|=r=sqrt((-17)^2+ (-19)^2) ~~25.495 |Z|=r=(17)2+(19)225.495 ;

tan alpha =b/a= (-19)/-17 ~~ 1.1176 :. alpha =tan^-1(1.1176) ~~ 48.18^0

Since Z is on 3rd quadrant :. theta=pi+alpha or

theta= 180+48.18= 228.18^0 . Argument : theta =228.18^0

In trigonometric form expressed as r(cos theta+isintheta)

= 25.495 (cos 228.18+isin228.18)

:. (1+7i)(-3+2i) ~~ 25.495 (cos 228.18+isin228.18) [Ans]