How do you multiply (17i)(34i) in trigonometric form?

1 Answer
Feb 23, 2018

Thus,
(17i)(34i)=102cis7π4

Explanation:

Let,z1=17i,

Re(z1)=1, Im(z1)=7

r1=(1)2+(7)2=50=52

θ1=tan1(71)=π+tan1(7)

Let,z2=34i

Re(z2)=3, Im(z2)=4

r2=(3)2+(4)2=25=5

θ2=tan1(43)=π+tan1(43)

z1=r1cisθ1
z2=r2cisθ2

z1z2=(r1cisθ1)(r2cisθ2)

z1z2=r1r2cisθ1cisθ2
By De-Moivre's theorem

cisθ1cisθ2=cis(θ1+θ2)

Thus,

z1z2=r1r2cis(θ1+θ2)

Substituting,

r1r2=52×5=102
θ1+θ2=π+tan1(7)+π+tan1(43)
=2π+tan1(7)+tan1(43)

tan1(7)+tan1(43)=tan1(7+4317×43)

7+4317×43=7×3+437×4=21+4328=2525=11
tan1(7)+tan1(43)=tan1(11)=2πtan1(1)

tan1(1)=π4

2πtan1(1)=2ππ4=7π4

r1cisθ1r2cisθ2=102cis7π4

Thus,
(17i)(34i)=102cis7π4