Let us write the two complex numbers in polar coordinates and let them be
z_1=r_1(cosalpha+isinalpha)z1=r1(cosα+isinα) and z_2=r_2(cosbeta+isinbeta)z2=r2(cosβ+isinβ)
Here, if two complex numbers are a_1+ib_1a1+ib1 and a_2+ib_2a2+ib2 r_1=sqrt(a_1^2+b_1^2)r1=√a21+b21, r_2=sqrt(a_2^2+b_2^2)r2=√a22+b22 and alpha=tan^(-1)(b_1/a_1)α=tan−1(b1a1), beta=tan^(-1)(b_2/a_2)β=tan−1(b2a2)
Their multiplicaton leads us to
{r_1xxr_2}{(cosalpha+isinalpha)xx(cosbeta+isinbeta)}{r1×r2}{(cosα+isinα)×(cosβ+isinβ)} or
{r_1r_2}(cosalphacosbeta+isinalphacosbeta+isinalphacosbeta+i^2sinalphasinbeta){r1r2}(cosαcosβ+isinαcosβ+isinαcosβ+i2sinαsinβ)
{r_1r_2}(cosalphacosbeta+isinalphacosbeta+isinalphacosbeta-sinalphasinbeta){r1r2}(cosαcosβ+isinαcosβ+isinαcosβ−sinαsinβ)
{r_1r_2}[(cosalphacosbeta-sinalphasinbeta+i(sinalphacosbeta+sinalphacosbeta)]{r1r2}[(cosαcosβ−sinαsinβ+i(sinαcosβ+sinαcosβ)] or
(r_1r_2)(cos(alpha+beta)+isin(alpha+beta))(r1r2)(cos(α+β)+isin(α+β)) or
z_1*z_2z1⋅z2 is given by (r_1*r_2, (alpha+beta))(r1⋅r2,(α+β))
So for multiplication of complex number z_1z1 and z_2z2 , take new angle as (alpha+beta)(α+β) and modulus r_1*r_2r1⋅r2 of the modulus of two numbers.
Here -1+8i−1+8i can be written as r_1(cosalpha+isinalpha)r1(cosα+isinα) where r_1=sqrt((-1)^2+8^2)=sqrt65r1=√(−1)2+82=√65 and alpha=tan^(-1)(-8/1)=tan^(-1)(-8)α=tan−1(−81)=tan−1(−8)
and -9+7i−9+7i can be written as r_2(cosbeta+isinbeta)r2(cosβ+isinβ) where r_2=sqrt((-9)^2+7^2)=sqrt(81+49)=sqrt130r2=√(−9)2+72=√81+49=√130 and beta=tan^(-1)(7/(-9))=tan^(-1)(-7/9)β=tan−1(7−9)=tan−1(−79)
and z_1*z_2=sqrt65xxsqrt130(costheta+isintheta)z1⋅z2=√65×√130(cosθ+isinθ), where theta=alpha+betaθ=α+β
Hence, as tantheta=tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)=((-8)+(-7/9))/(1-(-8)xx(-7/9))=(-79/9)/(1-(56/9))=(-79/9)/(-47/9)=79/47tanθ=tan(α+β)=tanα+tanβ1−tanαtanβ=(−8)+(−79)1−(−8)×(−79)=−7991−(569)=−799−479=7947.
and z=65sqrt2z=65√2
Hence, (-1+8i)xx(-9+7i)=65sqrt2(costheta+isintheta)(−1+8i)×(−9+7i)=65√2(cosθ+isinθ), where theta=tan^(-1)(79/47)θ=tan−1(7947)