How do you multiply (-1+8i)(-9+7i) (1+8i)(9+7i) in trigonometric form?

1 Answer
Jul 23, 2016

(-1+8i)xx(-9+7i)=65sqrt2(costheta+isintheta)(1+8i)×(9+7i)=652(cosθ+isinθ), where theta=tan^(-1)(79/47)θ=tan1(7947)

Explanation:

Let us write the two complex numbers in polar coordinates and let them be

z_1=r_1(cosalpha+isinalpha)z1=r1(cosα+isinα) and z_2=r_2(cosbeta+isinbeta)z2=r2(cosβ+isinβ)

Here, if two complex numbers are a_1+ib_1a1+ib1 and a_2+ib_2a2+ib2 r_1=sqrt(a_1^2+b_1^2)r1=a21+b21, r_2=sqrt(a_2^2+b_2^2)r2=a22+b22 and alpha=tan^(-1)(b_1/a_1)α=tan1(b1a1), beta=tan^(-1)(b_2/a_2)β=tan1(b2a2)

Their multiplicaton leads us to

{r_1xxr_2}{(cosalpha+isinalpha)xx(cosbeta+isinbeta)}{r1×r2}{(cosα+isinα)×(cosβ+isinβ)} or

{r_1r_2}(cosalphacosbeta+isinalphacosbeta+isinalphacosbeta+i^2sinalphasinbeta){r1r2}(cosαcosβ+isinαcosβ+isinαcosβ+i2sinαsinβ)

{r_1r_2}(cosalphacosbeta+isinalphacosbeta+isinalphacosbeta-sinalphasinbeta){r1r2}(cosαcosβ+isinαcosβ+isinαcosβsinαsinβ)

{r_1r_2}[(cosalphacosbeta-sinalphasinbeta+i(sinalphacosbeta+sinalphacosbeta)]{r1r2}[(cosαcosβsinαsinβ+i(sinαcosβ+sinαcosβ)] or

(r_1r_2)(cos(alpha+beta)+isin(alpha+beta))(r1r2)(cos(α+β)+isin(α+β)) or

z_1*z_2z1z2 is given by (r_1*r_2, (alpha+beta))(r1r2,(α+β))

So for multiplication of complex number z_1z1 and z_2z2 , take new angle as (alpha+beta)(α+β) and modulus r_1*r_2r1r2 of the modulus of two numbers.

Here -1+8i1+8i can be written as r_1(cosalpha+isinalpha)r1(cosα+isinα) where r_1=sqrt((-1)^2+8^2)=sqrt65r1=(1)2+82=65 and alpha=tan^(-1)(-8/1)=tan^(-1)(-8)α=tan1(81)=tan1(8)

and -9+7i9+7i can be written as r_2(cosbeta+isinbeta)r2(cosβ+isinβ) where r_2=sqrt((-9)^2+7^2)=sqrt(81+49)=sqrt130r2=(9)2+72=81+49=130 and beta=tan^(-1)(7/(-9))=tan^(-1)(-7/9)β=tan1(79)=tan1(79)

and z_1*z_2=sqrt65xxsqrt130(costheta+isintheta)z1z2=65×130(cosθ+isinθ), where theta=alpha+betaθ=α+β

Hence, as tantheta=tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)=((-8)+(-7/9))/(1-(-8)xx(-7/9))=(-79/9)/(1-(56/9))=(-79/9)/(-47/9)=79/47tanθ=tan(α+β)=tanα+tanβ1tanαtanβ=(8)+(79)1(8)×(79)=7991(569)=799479=7947.

and z=65sqrt2z=652

Hence, (-1+8i)xx(-9+7i)=65sqrt2(costheta+isintheta)(1+8i)×(9+7i)=652(cosθ+isinθ), where theta=tan^(-1)(79/47)θ=tan1(7947)