To divide (1 - i)* (-4 - 3 i)(1−i)⋅(−4−3i) using trigonometric form.
z_1 = (1 - i), z_2 = (-4 - 3 i)z1=(1−i),z2=(−4−3i)
#r_1 = sqrt(-1^2 + 1^2) = sqrt 2
r_2 = sqrt(-3^2 + -4^2) = 5r2=√−32+−42=5
theta_1 = arctan (-1/1) = 315^@, " IV quadrant"θ1=arctan(−11)=315∘, IV quadrant
Theta_2 = arctan(-3/-4) = 216.87^@, " III quadrant"
z_1 * z_2 = (r_1 * r_2) * (cos (theta_1 + theta_2) + i sin (theta_1 + theta_2))
z_1 / z_2 = sqrt2 / 5 * (cos (315 + 216.87 ) + i sin (315 + 216.87 ))
z_1 / z_2 = sqrt2 / 5 * (cos (531.87) + i sin (531.87))
color(indigo)((1 - i)* (-4 - 3 i) ~~ -0.28 + i 0.04