z1⋅z2=(r1⋅r2)⋅((cosθ1+θ2)+isin(θ1+θ2))
z1=(−10−2i),z2=(3−i)
r1=√−102+−22=√104
θ1=tan−1(−2−10)+191.31∘, III quadrant
r2=√32=−12=√10
θ2=tan−1(−13)=−18.43∘=341.57∘, IV quadrant
z1⋅z2=(√104⋅√10)⋅(cos(191.31+341.57)+i(191.31+341.57))
(10−2i)⋅(3−i)=32.25⋅(−0.9923+i0.1239)