How do you multiply (-2-9i)(-3-4i) (29i)(34i) in trigonometric form?

1 Answer
May 19, 2018

(-30+35i)(30+35i)

Explanation:

Any complex equation in the form of a+bia+bi i.e. (vector form) can be written as re^(thetai)reθi (rectangular form)
Here,
r rarrr magnitude of the vector, and
theta rarrθ the angle between the vector form and the components

now, re^(thetai)reθi is equivalent to r(costheta +isintheta)r(cosθ+isinθ)

this tells us,
a=rcosthetaa=rcosθ
and b=rsinthetab=rsinθ
thus, by solving the 2 above equations, r=sqrt(a^2+b^2)r=a2+b2
and theta=tan^-1(b/a)θ=tan1(ba)

So, solving for (-2-9i)(29i),
r_1 = sqrt85r1=85
theta_1=77.47θ1=77.47 degrees

And,solving for (-3-4i)(34i),
r_2 = 5r2=5
theta_2=53.13θ2=53.13 degrees

so, we get,
(−2−9i)(−3-4i)=sqrt85 e^(77.47i)(29i)(34i)=85e77.47i x 5e^(53.13i)= 5sqrt85 e^(130.6i)5e53.13i=585e130.6i

:. (−2−9i)(−3-4i)=5sqrt85(cos130.6+isin130.6)

:. (−2−9i)(−3-4i)=5sqrt85(-0.651+0.759i)

:. (−2−9i)(−3-4i)=(-30+35i)