How do you multiply (3+5i)(66i) in trigonometric form?

1 Answer

6(8+2i)

Explanation:

Given that

(3+5i)(66i)

=34(cos(tan1(53))+isin(tan1(53)))62(cos(π4)+isin(π4))

=1217(cos(tan1(53)π4)+isin(tan1(53)π4))

=1217(cos(tan1(53))cos(π4)+sin(tan1(53))sin(π4)+i(sin(tan1(53))cos(π4)cos(tan1(53))sin(π4)))

=1217(33412+53412+i(5341233412))

=1217217(8+2i)

=6(8+2i)