How do you multiply (3-5i)(7-8i) (35i)(78i) in trigonometric form?

1 Answer
Oct 17, 2017

(3-5i)(7-8i) = 61.98(cos 4.40+isin4.40) (35i)(78i)=61.98(cos4.40+isin4.40)

Explanation:

Z= (3-5i)(7-8i) = (21-24i-35i+40i^2)Z=(35i)(78i)=(2124i35i+40i2)

=21-59i-40 = -19-59i [i^2= -1]=2159i40=1959i[i2=1]

Modulus |Z|=r=sqrt((-19)^2+ (-59)^2) =61.98 |Z|=r=(19)2+(59)2=61.98 ;

tan alpha =b/a= (-59)/-19 = 3.105 :. alpha =tan^-1(3.105) = 1.259 or

theta is on 3rd quadrant :. theta=1.259+pi= 4.40 rad

Argument : theta =4.40 :. In trigonometric form expressed as

r(cos theta+isintheta) = 61.98(cos 4.40+isin4.40) :.

(3-5i)(7-8i) = 61.98(cos 4.40+isin4.40) [Ans]