How do you multiply (3b-3c)^2(3b3c)2?

1 Answer
Feb 14, 2017

See the entire solution process below:

Explanation:

This expression can be rewritten as:

(3b - 3c)(3b - 3c)(3b3c)(3b3c)

To multiply these two terms you multiply each individual term in the left parenthesis by each individual term in the right parenthesis.

(color(red)(3b) - color(red)(3c))(color(blue)(3b) - color(blue)(3c))(3b3c)(3b3c) becomes:

(color(red)(3b) xx color(blue)(3b)) - (color(red)(3b) xx color(blue)(3c)) - (color(red)(3c) xx color(blue)(3b)) + (color(red)(3c) xx color(blue)(3c))(3b×3b)(3b×3c)(3c×3b)+(3c×3c)

9b^2 - 9bc - 9bc + 9c^29b29bc9bc+9c2

We can now combine like terms:

9b^2 + (-9 - 9)bc + 9c^29b2+(99)bc+9c2

9b^2 + (-18)bc + 9c^29b2+(18)bc+9c2

9b^2 - 18bc + 9c^29b218bc+9c2