How do you multiply (4+3i)(-3+2i) (4+3i)(3+2i) in trigonometric form?

1 Answer
Dec 8, 2016

(4+3i)*(-3+2i)=5sqrt13(costheta+isintheta)(4+3i)(3+2i)=513(cosθ+isinθ), where theta=tan^(-1)(1/18)θ=tan1(118)

Explanation:

Let us write the two complex numbers in polar coordinates and let them be

z_1=r_1(cosalpha+isinalpha)z1=r1(cosα+isinα) and z_2=r_2(cosbeta+isinbeta)z2=r2(cosβ+isinβ)

Here, if two complex numbers are a_1+ib_1a1+ib1 and a_2+ib_2a2+ib2 r_1=sqrt(a_1^2+b_1^2)r1=a21+b21, r_2=sqrt(a_2^2+b_2^2)r2=a22+b22 and alpha=tan^(-1)(b_1/a_1)α=tan1(b1a1), beta=tan^(-1)(b_2/a_2)β=tan1(b2a2)

Their multiplication leads us to

{r_1r_2}{(cosalpha+isinalpha)(cosbeta+isinbeta)}{r1r2}{(cosα+isinα)(cosβ+isinβ)} or

(r_1r_2){(cosalphacosbeta+i^2sinalphasinbeta)+i(sinalphacosbeta+cosalphasinbeta))(r1r2){(cosαcosβ+i2sinαsinβ)+i(sinαcosβ+cosαsinβ)) or

(r_1r_2){(cosalphacosbeta-sinalphasinbeta)+i(sinalphacosbeta+cosalphasinbeta))(r1r2){(cosαcosβsinαsinβ)+i(sinαcosβ+cosαsinβ)) or

(r_1r_2)*(cos(alpha+beta)+isin(alpha+beta))(r1r2)(cos(α+β)+isin(α+β)) or

z_1*z_2z1z2 is given by (r_1r_2, (alpha+beta))(r1r2,(α+β))

So for multiplication complex number z_1z1 by z_2z2 , take new angle as (alpha+beta)(α+β) and modulus is r_1*r_2r1r2 i.e. product of the modulus of two numbers.

Here 4+3i4+3i can be written as r_1(cosalpha+isinalpha)r1(cosα+isinα) where r_1=sqrt(4^2+3^2)=sqrt25=5r1=42+32=25=5 and alpha=tan^(-1)3/4α=tan134

and -3+2i3+2i can be written as r_2(cosbeta+isinbeta)r2(cosβ+isinβ) where r_2=sqrt((-3)^2+2^2)=sqrt13r2=(3)2+22=13 and beta=tan^(-1)(-2/3)β=tan1(23)

and z_1*z_2=5sqrt13(costheta+isintheta)z1z2=513(cosθ+isinθ), where theta=alpha+betaθ=α+β

Hence, tantheta=tan(alpha+beta)=(tanalpha+tanbeta)/(1-tanalphatanbeta)=(3/4+(-2/3))/(1-3/4xx(-2/3))=(1/12)/(3/2)=1/18tanθ=tan(α+β)=tanα+tanβ1tanαtanβ=34+(23)134×(23)=11232=118.

Hence, (4+3i)*(-3+2i)=5sqrt13(costheta+isintheta)(4+3i)(3+2i)=513(cosθ+isinθ), where theta=tan^(-1)(1/18)θ=tan1(118)