How do you multiply (4-5i)(2+7i) in trigonometric form?

1 Answer
Apr 3, 2018

color(purple)(z_1z_2=sqrt2173[cos(0.396)+isin(0.396)])

Explanation:

Convert the numbers to polar form.

color(red)(z_1=4-5i)

rArrr_1=sqrt(4^2+(-5)^2)=sqrt(16+25)=sqrt41

rArrtheta_1=arctan((-5)/4)~~5.387

rArrr_1[costheta_1+isintheta_1]=color(red)(sqrt41[cos(5.387)+isin(5.387)])

color(blue)(z_2=2+7i)

rArrr_2=sqrt(2^2+7^2)=sqrt(4+49)=sqrt53

rArrtheta_2=arctan(7/2)~~1.292

rArrr_2[costheta_2+isintheta_2]=color(blue)(sqrt53[cos(1.292)+isin(1.292)])

Now to multiply them together, the result will be:

z_1z_2=r_1r_2[cos(theta_1+theta_2)+isin(theta_1+theta_2)]

rArrr_1r_2=sqrt41sqrt53=sqrt(41*53)=sqrt(2173)

rArrtheta_1+theta_2=arctan((-5)/4)+arctan(7/2)~~6.680

We usually try to express theta on the interval

0 < theta < 2pi

6.680 - 2pi~~0.396

So our final answer is:

color(purple)(z_1z_2=sqrt2173[cos(0.396)+isin(0.396)])