Let
z1=4+5i
z2=−3+7i
We need to find
z=z1z2
r1=√42+52=√16+25=√41
r1=√41
θ1=tan−1(54)
z1=r1cisθ1
z1=√41cis(tan−1(54))
r2=√(−3)2+72=√9+49=√58
r2=√58
θ2=tan−1(7−3)
z2=r2cisθ2
z2=√58cis(tan−1(7−3))
z=z1z2
z=(√41cis(tan−1(54)))(√58cis(tan−1(7−3)))
z=√41√58cis(tan−1(54))cis(tan−1(7−3))
√41√58=√41×58=√2378
By De-Moivre's Theorem
cis(tan−1(54))cis(tan−1(7−3))=cis(tan−1(54)+tan−1(7−3))
tan−1(54)+tan−1(7−3)=tan−1(54+7−31−54×7−3)
54+7−3=5×−3+7×44×−3=−15+28−12=13−12
z=rcisθ
r=√2378
θ=tan−1(13−12)
z=√2378cis(tan−1(13−12))
r=48.765
tan−1(13−12)
adjacent side is negative,
the angle lies in the second quadrant
tan−1(13−12)=π−tan−1(1312)
tan−1(1312)=0.825
expressed in radians
tan−1(1312)=π−0.825
θ=2.317
cos0.825=−0.679
since the complex number is in 2nd quadrant
sin0.825=0.735
r=48.765
x=rcosθ=48.765×(−0.679)
x=−33.111
y=rsinθ=48.765×0.735
y=35.842
z=x+iy
z=(−33.111)+i(35.842)
Thus,
(4+5i)(−3+7i)=48.765cis2.317
(4+5i)(−3+7i)=−33.111+35.842i