How do you multiply (4+5i)(3+7i) in trigonometric form?

1 Answer
Feb 28, 2018

(4+5i)(3+7i)=48.765cis2.317
(4+5i)(3+7i)=33.111+35.842i

Explanation:

Let
z1=4+5i
z2=3+7i
We need to find

z=z1z2
r1=42+52=16+25=41
r1=41
θ1=tan1(54)
z1=r1cisθ1
z1=41cis(tan1(54))

r2=(3)2+72=9+49=58
r2=58
θ2=tan1(73)
z2=r2cisθ2
z2=58cis(tan1(73))

z=z1z2
z=(41cis(tan1(54)))(58cis(tan1(73)))

z=4158cis(tan1(54))cis(tan1(73))
4158=41×58=2378
By De-Moivre's Theorem

cis(tan1(54))cis(tan1(73))=cis(tan1(54)+tan1(73))
tan1(54)+tan1(73)=tan1(54+73154×73)

54+73=5×3+7×44×3=15+2812=1312
z=rcisθ

r=2378
θ=tan1(1312)
z=2378cis(tan1(1312))
r=48.765
tan1(1312)
adjacent side is negative,
the angle lies in the second quadrant
tan1(1312)=πtan1(1312)
tan1(1312)=0.825
expressed in radians
tan1(1312)=π0.825
θ=2.317

cos0.825=0.679
since the complex number is in 2nd quadrant
sin0.825=0.735

r=48.765
x=rcosθ=48.765×(0.679)
x=33.111

y=rsinθ=48.765×0.735
y=35.842
z=x+iy

z=(33.111)+i(35.842)

Thus,
(4+5i)(3+7i)=48.765cis2.317
(4+5i)(3+7i)=33.111+35.842i