First of all we have to convert these two numbers into trigonometric forms.
If (a+ib)(a+ib) is a complex number, uu is its magnitude and alphaα is its angle then (a+ib)(a+ib) in trigonometric form is written as u(cosalpha+isinalpha)u(cosα+isinα).
Magnitude of a complex number (a+ib)(a+ib) is given bysqrt(a^2+b^2)√a2+b2 and its angle is given by tan^-1(b/a)tan−1(ba)
Let rr be the magnitude of (4+6i)(4+6i) and thetaθ be its angle.
Magnitude of (4+6i)=sqrt(4^2+6^2)=sqrt(16+36)=sqrt52=2sqrt13=r(4+6i)=√42+62=√16+36=√52=2√13=r
Angle of (4+6i)=Tan^-1(6/4)=tan^-1(3/2)=theta(4+6i)=tan−1(64)=tan−1(32)=θ
implies (4+6i)=r(Costheta+isintheta)⇒(4+6i)=r(cosθ+isinθ)
Let ss be the magnitude of (3+7i)(3+7i) and phiϕ be its angle.
Magnitude of (3+7i)=sqrt(3^2+7^2)=sqrt(9+49)=sqrt58=s(3+7i)=√32+72=√9+49=√58=s
Angle of (3+7i)=Tan^-1(7/3)=phi(3+7i)=tan−1(73)=ϕ
implies (3+7i)=s(Cosphi+isinphi)⇒(3+7i)=s(cosϕ+isinϕ)
Now,
(4+6i)(3+7i)(4+6i)(3+7i)
=r(Costheta+isintheta)*s(Cosphi+isinphi)=r(cosθ+isinθ)⋅s(cosϕ+isinϕ)
=rs(costhetacosphi+isinthetacosphi+icosthetasinphi+i^2sinthetasinphi)=rs(cosθcosϕ+isinθcosϕ+icosθsinϕ+i2sinθsinϕ)
=rs(costhetacosphi-sinthetasinphi)+i(sinthetacosphi+costhetasinphi)=rs(cosθcosϕ−sinθsinϕ)+i(sinθcosϕ+cosθsinϕ)
=rs(cos(theta+phi)+isin(theta+phi))=rs(cos(θ+ϕ)+isin(θ+ϕ))
Here we have every thing present but if here directly substitute the values the word would be messy for find theta +phiθ+ϕ so let's first find out theta+phiθ+ϕ.
theta+phi=tan^-1(3/2)+tan^-1(7/3)θ+ϕ=tan−1(32)+tan−1(73)
We know that:
tan^-1(a)+tan^-1(b)=tan^-1((a+b)/(1-ab))tan−1(a)+tan−1(b)=tan−1(a+b1−ab)
implies tan^-1(3/2)+tan^-1(7/3)=tan^-1(((3/2)+(7/3))/(1-(3/2)(7/3)))=tan^-1((9+14)/(6-21))⇒tan−1(32)+tan−1(73)=tan−1⎛⎜⎝(32)+(73)1−(32)(73)⎞⎟⎠=tan−1(9+146−21)
=tan^-1((23)/(-15))=tan^-1(-23/15)=tan−1(23−15)=tan−1(−2315)
implies theta +phi=tan^-1(-23/15)⇒θ+ϕ=tan−1(−2315)
rs(cos(theta+phi)+isin(theta+phi))rs(cos(θ+ϕ)+isin(θ+ϕ))
=2sqrt13sqrt58(cos(tan^-1 (-23/15))+isin(tan^-1 (-23/15)))=2√13√58(cos(tan−1(−2315))+isin(tan−1(−2315)))
=2sqrt(754)(cos(tan^-1 (-23/15))+isin(tan^-1 (-23/15)))=2√754(cos(tan−1(−2315))+isin(tan−1(−2315)))
This is your final answer.
You can also do it by another method.
By firstly multiplying the complex numbers and then changing it to trigonometric form, which is much easier than this.
(4+6i)(3+7i)=12+28i+18i+42i^2=12+46i-42=-30+46i(4+6i)(3+7i)=12+28i+18i+42i2=12+46i−42=−30+46i
Now change -30+46i−30+46i in trigonometric form.
Magnitude of -30+46i=sqrt((-30)^2+(46)^2)=sqrt(900+2116)=sqrt3016=2sqrt754−30+46i=√(−30)2+(46)2=√900+2116=√3016=2√754
Angle of -30+46i=tan^-1(46/-30)=tan^-1(-23/15)−30+46i=tan−1(46−30)=tan−1(−2315)
implies -30+46i=2sqrt754(cos(tan^-1(-23/15))+isin(tan^-1(-23/15)))⇒−30+46i=2√754(cos(tan−1(−2315))+isin(tan−1(−2315)))