How do you multiply (5+3i)(3+2i) (5+3i)(3+2i) in trigonometric form?

1 Answer

(5+3i)(3+2i)~~21.02(cos(64.65)+isin(64.65))(5+3i)(3+2i)21.02(cos(64.65)+isin(64.65))

Explanation:

a+bia+bi in trig form is r(cos\theta+isin\thetar(cosθ+isinθ), where:

  • r=sqrt(a^2+b^2)r=a2+b2
  • \theta=abs(arctan(b/a))θ=arctan(ba)

(5+3i)(3+2i)~=(r_1(cos\theta_1+isin\theta_1))(r_2(cos\theta_2+isin\theta_2))(5+3i)(3+2i)(r1(cosθ1+isinθ1))(r2(cosθ2+isinθ2))
=r_1r_2(cos(\theta_1+\theta_2)+isin(\theta_1+\theta_2))=r1r2(cos(θ1+θ2)+isin(θ1+θ2))
=sqrt(5^2+3^2)sqrt(3^2+2^2)(cos(abs(arctan(3/5))+abs(arctan(2/3)))+isin(abs(arctan(3/5))+abs(arctan(2/3))))=52+3232+22(cos(arctan(35)+arctan(23))+isin(arctan(35)+arctan(23)))
~~sqrt(34)sqrt(13)(cos(64.65)+isin(64.65))3413(cos(64.65)+isin(64.65))
=sqrt(442)(cos(64.65)+isin(64.65))=442(cos(64.65)+isin(64.65))
~~21.02(cos(64.65)+isin(64.65))21.02(cos(64.65)+isin(64.65))

Given tantheta_1=3/5tanθ1=35 and tantheta_1=2/3tanθ1=23

tantheta=(3/5+2/3)/(1-3/5xx2/3)=(19/15)/(3/5)=19/9tanθ=35+23135×23=191535=199

and in exact form we can write product as

sqrt442(cos(arctan(19/9))+isin((arctan(19/9)))442(cos(arctan(199))+isin((arctan(199)))