How do you multiply (-7+3i)(1+3i) (7+3i)(1+3i) in trigonometric form?

1 Answer
May 14, 2018

(-7+ 3 i)(1+ 3 i) =24.08 ( cos (3.99) + i sin(3.99) = (-16-18 i) (7+3i)(1+3i)=24.08(cos(3.99)+isin(3.99)=(1618i)

Explanation:

Let Z=a+i b ; Z=-7+ 3 i ; a=-7 ,b = 3Z=a+ib;Z=7+3i;a=7,b=3 ;

Z=-7+ 3 iZ=7+3i is in 22 nd quadrant.

Modulus |Z|=sqrt(a^2+b^2)=(sqrt((-7)^2+ 3^2)) =sqrt 58 |Z|=a2+b2=((7)2+32)=58

tan alpha =|b/a|= 3/7 or alpha =tan^-1(3/7) ~~ 0.4049tanα=ba=37orα=tan1(37)0.4049

thetaθ is on 22 nd quadrant :. theta=pi-0.4049

:. theta~~ 2.7367. Argument , theta ~~2.7367:.

In trigonometric form expressed as

r(cos theta+isintheta) = sqrt58(cos 2.74+i sin 2.74)

Z=1+ 3 i is in 1 st quadrant.

Modulus |Z|=sqrt(a^2+b^2)=(sqrt(1^2+ 3^2)) =sqrt 10

tan alpha =|b/a|= 3/1 or alpha =tan^-1(3) ~~ 1.249

theta is on 1 st quadrant :. theta=1.249

Argument , theta ~~1.249:.

In trigonometric form expressed as

r(cos theta+isintheta) = sqrt 10 (cos 1.25+i sin 1.25)

(-7+ 3 i)(1+ 3 i) =

sqrt58(cos 2.74+i sin 2.74) * sqrt 10 (cos 1.25+i sin 1.25)~~

sqrt58 * sqrt 10 ( cos (2.74+1.25) + i sin(2.74+1.25) ~~

24.08 ( cos (3.99) + i sin(3.99) = (-16-18 i) [Ans]