How do you multiply (9i)(73i) in trigonometric form?

1 Answer

21189(cos(α+β)+isin(α+β)), where α=tan1(19) and β=tan1(37)

Explanation:

A complex number of form a+bi can be written as r(cosθ+isinθ), where r=a2+b2 and θ=tan1(ba).

Using this (9i)=82(cosα+isinα), and α=tan1(19)

Similarly, (73i)=58(cosβ+isinβ), and β=tan1(37)

Multiplication of (82(cosα+isinα) and 58(cosβ+isinβ) is given by

21189(cos(α+β)+isin(α+β)), where α=tan1(19) and β=tan1(37), as 8258=21189.