How do you multiply ABC if #A=((3, 10), (1, 2))#, #B=((1, 0, 4), (2, -1, 5))#, #C=((3), (1), (1))#?
1 Answer
Multiply the matrices in order by grouping either
Explanation:
Matrices are multiplied by summing the products of the corresponding elements of the rows of the first matrix with the columns of the second. To do this, the first matrix must have the same number of columns as the second matrix has rows. This is often stated as having the same "inner" dimensions. In other words, the matrices must have sizes
To multiply more than two matrices, as in this example, one just needs to pick two and do the multiplication and then multiply that result by the third. It doesn't matter which 2 we choose so long as we keep the order the same - i.e. either of the following is valid:
To make this choice, it is good to think about what the dimensions of the results would be! For example, if we multiply
Whereas
so to save some work, we should do the multiplication of
Now we continue by multiplying by