How do you multiply e11π8ieπ2i in trigonometric form?

1 Answer
Jan 3, 2016

Euler formula eiθ=cos(θ)+isin(θ) that would convert to trigonometric form. When we multiply trigonometric form we add the angles and multiply the modulus.

Explanation:

e11π8ie(π2)i

e11π8i=cos(11π8)+isin(11π8)

e(π2)i=cos(π2)+isin(π2)

e11π8ie(π2)i

=(cos(11π8)+isin(11π8))(cos(π2)+isin(π2))

=cos(11π8+π2)+isin(11π8+π2)

=cos(11π8+4π8)+isin(11π8+4π4)

=cos((11+4)π8)+isin((11+4)π8)

=cos(15π8)+isin(15π8)

Note: The question said in trigonometric form so converted to trigonometric form and multiplied. Using Euler's form would be easy multiply and then convert, the choice is yours.

Alternate method:
e11π8ie(π2)i
=e(11π8+π2)i using exponent rule aman=am+n
=e(15π8)i

Use the Euler's formula

=cos(15π8)+isin(15π8) Answer.