How do you multiply e11π12eπ4i in trigonometric form?

1 Answer
May 30, 2018

The answer is =3212i

Explanation:

Apply Euler's relation

eiθ=cosθ+isinθ

e1112iπ=cos(1112π)+isin(1112π)

e14iπ=cos(14π)+isin(14π)

i2=1

Therefore,

e1112iπe14iπ=(cos(1112π)+isin(1112π))(cos(14π)+isin(14π))

=cos(1112π)cos(14π)sin(1112π)sin(14π)+i(cos(1112π)sin(14π)+sin(1112π)cos(14π)))

=cos(1112π+14π)+isin(1112π+14π)

=cos(1412π)+isin(1412π)

=cos(76π)+isin(76π)

=3212i