How do you multiply e17π12ie3π2i in trigonometric form?

1 Answer
Mar 29, 2016

ei1712π.ei32π=cos(512π)+isin(512π)

Explanation:

Recall the Trigonomic identities:

sin(x)=sin(x)
2cosθcosφ=cos(θφ)+cos(θ+φ)
2sinθsinφ=cos(θφ)cos(θ+φ)
2sinθcosφ=sin(θ+φ)+sin(θφ)

In Trigonomic form the following expression gives:

ex+iy=ex(cosy+isinx)
eiy=cosy+isiny

Using these in the given values we have:
ei1712π.ei32π=(cos(1712π)+isin(172π))(cos(32π)+isin(32π))
=cos(1712π)cos(32π)+isin(172π)cos(32π)+icos(1712π)sin(32π)sin(172π)sin(32π)

Using the identities this simplifies to:
=12(cos(5312π)+cos(172π)+i(sin(5312π)+sin(1912π))+i(sin(5312π)+sin(1912π))cos(172π)+cos(5312π))
=cos(5312π)+isin(5312π))

Using the 2π periodicity of the functions we have:
=cos(512π)+isin(512π)