How do you multiply e^(( 19pi )/ 12 ) * e^( pi/2 i ) e19π12eπ2i in trigonometric form?

1 Answer
Jan 26, 2018

The answer is =(sqrt6+sqrt2)/4+i(sqrt6-sqrt2)/4=6+24+i624

Explanation:

Apply Euler's Identity

e^(itheta)=costheta+isinthetaeiθ=cosθ+isinθ

i^2=-1i2=1

Therefore,

e^(ipi/2)=cos(pi/2)+isin(pi/2)=0+i*1=ieiπ2=cos(π2)+isin(π2)=0+i1=i

e^(i19/12pi)=cos(19/12pi)+isin(19/12pi)ei1912π=cos(1912π)+isin(1912π)

cos(19/12pi)=cos(5/4pi+1/3pi)cos(1912π)=cos(54π+13π)

=cos(5/4pi)cos(1/3pi)-sin(5/4pi)sin(1/3pi)=cos(54π)cos(13π)sin(54π)sin(13π)

=(-sqrt2/2)*(1/2)-(-sqrt2/2)*(sqrt3/2)=(22)(12)(22)(32)

=-sqrt2/4+sqrt6/4=24+64

=(sqrt6-sqrt2)/4=624

sin(19/12pi)=sin(5/4pi+1/3pi)sin(1912π)=sin(54π+13π)

=sin(5/4pi)cos(1/3pi)+cos(5/4pi)sin(1/3pi)=sin(54π)cos(13π)+cos(54π)sin(13π)

=(-sqrt2/2)*(1/2)+(-sqrt2/2)*(sqrt3/2)=(22)(12)+(22)(32)

=-sqrt2/4-sqrt6/4=2464

=-(sqrt6+sqrt2)/4=6+24

Finally,

e^(i19/12pi)*e^(ipi/2)=((sqrt6-sqrt2)/4-i(sqrt6+sqrt2)/4)*(i)ei1912πeiπ2=(624i6+24)(i)

=(sqrt6+sqrt2)/4+i(sqrt6-sqrt2)/4=6+24+i624