How do you multiply e^(( 19pi )/ 8 i) * e^( pi/2 i ) e19π8ieπ2i in trigonometric form?

1 Answer
May 31, 2017

e^(19/8pi i)*e^(1/2pi i)=1/2(sqrt(2-sqrt2)e198πie12πi=12(22 i-sqrt(2+sqrt2))i2+2)

Explanation:

By the multiplication rule of exponents, we can rewrite the equation as one exponent:

e^(19/8pi i)*e^(1/2pi i)=e^((19/8pi+1/2pi)i)=e^(23/8pi i)e198πie12πi=e(198π+12π)i=e238πi

Recall Euler's formula:

e^(theta i) -=costheta+isinthetaeθicosθ+isinθ

e^(23/8 pi i)=cos(23/8 pi)+isin(23/8 pi)e238πi=cos(238π)+isin(238π)

cos(23/8pi)-sqrt(2+sqrt2)/2cos(238π)2+22

isin(23/8pi)=sqrt(2-sqrt2)/2 iisin(238π)=222i

Adding the two, we get:

sqrt(2-sqrt2)/2222 i-sqrt(2+sqrt2)/2=1/2(sqrt(2-sqrt2)i2+22=12(22 i-sqrt(2+sqrt2))i2+2)

therefore e^(19/8pi i)*e^(1/2pii)=1/2(sqrt(2-sqrt2) i-sqrt(2+sqrt2))