How do you multiply e2π3ie3π2i in trigonometric form?

1 Answer
May 19, 2016

e2π3ie3π2i=32+12i

Explanation:

a+ib can be written in trigonometric form reiθ=rcosθ+irsinθ=r(cosθ+isinθ),
where r=a2+b2, but here in given question r=1

Hence e2π3ie3π2i=e(2π3+3π2)i

= e(4π6+9π6)i=e13π6i

= (cos(13π6)+isin(13π6))

= (cos(2π+π6)+isin(2π+π6))

= (cos(π6)+isin(π6))

= 32+12i