How do you multiply e2π3ieπ2i in trigonometric form?

2 Answers
May 15, 2018

cos(7π6)+isin(7π6)=e7π6i

Explanation:

eiθ=cos(θ)+isin(θ)

eiθ1eiθ2==cos(θ1+θ2)+isin(θ1+θ2)

θ1+θ2=2π3+π2=7π6

cos(7π6)+isin(7π6)=e7π6i

May 15, 2018

The answer is ==32+12i

Explanation:

Another method .

i2=1

Euler's relation

eiθ=cosθ+isinθ

Therefore,

e23πieπ2i=(cos(23π)+isin(23π))(cos(π2)+isin(π2))

=(12+i32)(0+i)

=12i32

=32+12i