How do you multiply e^(( 3 pi )/ 4 i) * e^( 3 pi/2 i ) in trigonometric form?

1 Answer
Mar 9, 2016

e^{i{3pi}/4} * e^{i{3pi}/2} = 1/sqrt2+ i/sqrt2

Explanation:

From the identity

e^{itheta} -= cos(theta) + i sin(theta)

We write

e^{i{3pi}/4} * e^{i{3pi}/2} = (cos({3pi}/4) + i sin({3pi}/4)) * (cos({3pi}/2) + i sin({3pi}/2))

= (-1/sqrt2 + i (1/sqrt2)) * (0 + i (-1))

= 1/sqrt2*(-1 + i) * (- i)

= 1/sqrt2*(i + 1)

= 1/sqrt2+ i/sqrt2