Are you sure its e^(3pi/2)e3π2 not e^((3pi)/2)e3π2 because it makes more sense when you write it in trig form.
Remember this beauty?
e^(ipi)=-1eiπ=−1
That was Euler's identity. This is the generalized formula:
e^(ix)=cosx+isinxeix=cosx+isinx
Therefore, we can break down the two terms involved:
e^(i3/8pi)=cos((3pi)/8)+isin((3pi)/8)ei38π=cos(3π8)+isin(3π8)
e^(i7/2pi)=cos((7pi)/2)+isin((7pi)/2)=0+i*(-1)=-iei72π=cos(7π2)+isin(7π2)=0+i⋅(−1)=−i
e^(i3/8pi)=(e^(i3/2pi))^(1/4)=(-i)^(1/4)ei38π=(ei32π)14=(−i)14
e^(i3/8pi)*e^(i3/2pi)=(e^(i3/2pi))^(1/4)*e^(i7/2pi)=(e^(i3/2pi))^(5/4)=(-i)^(5/4)=-(-1)^(7/8)ei38π⋅ei32π=(ei32π)14⋅ei72π=(ei32π)54=(−i)54=−(−1)78
Or
e^(i3/8pi)*e^(i7/2pi) = sin((3pi)/8)-icos((3pi)/8)ei38π⋅ei72π=sin(3π8)−icos(3π8)
=cos(pi/8)-isin(pi/8)=cos(π8)−isin(π8)