How do you multiply e4π3ie3π2i in trigonometric form?

1 Answer
Apr 22, 2018

The answer is =32+12i

Explanation:

Apply Euler's identity

eiθ=cosθ+isinθ

I2=1

cos(43π)=12

sin(43π)=32

sin(32π)=1

cos(32π)=0

Therefore,

e43iπ.e32iπ

=(cos(43π)+isin(43π))(cos(32π)+isin(32π))

=(12i32)(0i)

=32+12i