How do you multiply e^(( 5 pi )/ 12 i) * e^( 3 pi/2 i ) in trigonometric form?

1 Answer
Jul 8, 2017

The answer is =(sqrt6+sqrt2)/4-i(sqrt6-sqrt2)/4

Explanation:

We apply Euler's formula

e^(itheta)=costheta+isintheta

e^(i5/12pi)=cos(5/12pi)+isin(5/12pi)

cos(5/12pi)=cos(3/12pi+2/12pi)

=cos(1/4pi+1/6pi)

=cos(1/4pi)cos(1/6pi)-sin(1/4pi)sin(1/6pi)

=sqrt2/2*sqrt3/2-sqrt2/2*1/2

=(sqrt6-sqrt2)/4

sin(5/12pi)=sin(1/4pi+1/6pi)

=sin(1/4pi)cos(1/6pi)+cos(1/4pi)sin(1/6pi)

=sqrt2/2*sqrt3/2+sqrt2/2*1/2

=(sqrt6+sqrt2)/4

Therefore,

e^(i5/12pi)=(sqrt6-sqrt2)/4+i(sqrt6+sqrt2)/4

e^(i3/2pi)=cos(3/2pi)+isin(3/2pi)

=0-i

So,

e^(i5/12pi).e^(i3/2pi)=((sqrt6-sqrt2)/4+i(sqrt6+sqrt2)/4)*-i

=(sqrt6+sqrt2)/4-i(sqrt6-sqrt2)/4

As i^2=-1

Verification

e^(i5/12pi)*e^(i3/2pi)=e^(i(5/12+3/2)pi)

=e^(i23/12pi)

=cos(-1/12pi)+isin(-1/12pi)

cos(-1/12pi)=cos(1/12pi)=cos(1/3pi-1/4pi)

=cos(1/3pi)cos(1/4pi)+sin(1/3pi)sin(1/4pi)

=1/2*sqrt2/2+sqrt3/2*sqrt2/2

=(sqrt6+sqrt2)/4

sin(-1/12pi)=-sin(1/3pi-1/4pi)

=-sin(1/3pi)cos(1/4pi)-cos(1/3pi)sin(1/4pi)

=-(sqrt3/2*sqrt2/2-1/2*sqrt2/2)

=-(sqrt6-sqrt2)/4

Therefore,

e^(i23/12pi)=(sqrt6+sqrt2)/4-i(sqrt6-sqrt2)/4

The result is the same.