How do you multiply e^(( 5 pi )/ 3 i) * e^( pi/2 i ) e5π3ieπ2i in trigonometric form?

1 Answer
Jul 17, 2018

color(magenta)(e^((5 pi)/(3) i) * e^(( pi)/2 i)~~ 0.866 + 0.5 ie5π3ieπ2i0.866+0.5i

Explanation:

e^((5 pi)/(3) i) * e^(( pi)/2 i)e5π3ieπ2i

e^(i theta) = cos theta +i sin thetaeiθ=cosθ+isinθ

:. e^((5 pi)/(3) i) = (cos (5 pi)/(3)+ i (sin 5 pi)/())

= 0.5 - 0.866 i , IV Quadrant

:. e^(( pi)/2 i) = (cos ((pi)/2)+ i sin ((pi)/2))

= 0 + i, II Quadrant

:. e^((5 pi)/(3) i) * e^(( pi)/2 i)

~~( 0.5 - 0.866 i ) - ( 0 + i)

color(magenta)(e^((5 pi)/(3) i) * e^(( pi)/2 i)~~ 0.866 + 0.5 i