How do you multiply e5π4ie3π2i in trigonometric form?

2 Answers
Apr 11, 2018

Using the formula eiθ=cos(θ)+isin(θ) and some trigonometric identities.

Explanation:

The formula:

e5π4i=cos(5π4)+isin(5π4)

e3π2i=cos(3π2)+isin(3π2)

Multiplication:

e5π4i×e3π2i=(cos(5π4)+isin(5π4))(cos(3π2)+isin(3π2))

=cos(5π4)cos(3π2)+icos(5π4)sin(3π2)+isin(5π4)cos(3π2)sin(5π4)sin(3π2)

=cos(5π4)cos(3π2)sin(5π4)sin(3π2)+i(cos(5π4)sin(3π2)+sin(5π4)cos(3π2))

=cos(5π4+3π2)+isin(5π4+3π2)

=cos(11π4)+isin(11π4)

=e11π4i

Its much easier if you do this:

e5π4i×e3π2i=e5π4i+3π2i

=e11π4i

Apr 11, 2018

The answer is =22+22i

Explanation:

Apply Eulers' Identity

eiθ=cosθ+isinθ

Therefore,

e54πie32πi=(cos(54π)+isin(54π))(cos(32π)+isin(32π))

cos(54π)=cos(14π+π)=cos(14π)cos(π)sin(14π)sin(π)

=22

sin(54π)=sin(14π+π)=sin(14π)cos(π)+cos(14π)sin(π)

=22

cos(32π)=cos(12π+π)=cos(12π)cos(π)sin(12π)sin(π)

=0

sin(32π)=sin(12π+π)=sin(12π)cos(π)+cos(12π)sin(π)

=1

Finally,

e54πie32πi=(2222i)(i)

=22+22i