How do you multiply e^(( 5 pi )/ 4 i) * e^( pi/2 i ) e5π4ieπ2i in trigonometric form?

1 Answer
Apr 13, 2016

e^((5pi/4)i)*e^((pi/2)i)=-1/sqrt2-i1/sqrt2e(5π4)ie(π2)i=12i12

Explanation:

A complex number can be written in polar form in two ways - either as r*e^(itheta)reiθ or as rcostheta+irsinthetarcosθ+irsinθ.

Hence,

e^((5pi/4)i)=cos(5pi/4)+isin(5pi/4)e(5π4)i=cos(5π4)+isin(5π4) and

e^((pi/2)i)=cos(pi/2)+isin(pi/2)e(π2)i=cos(π2)+isin(π2)

Hence, e^((5pi/4)i)*e^((pi/2)i)e(5π4)ie(π2)i

= (cos(5pi/4)+isin(5pi/4))*(cos(pi/2)+isin(pi/2))(cos(5π4)+isin(5π4))(cos(π2)+isin(π2))

= (cos(5pi/4)+isin(5pi/4))*(0+i)(cos(5π4)+isin(5π4))(0+i)

as cos(pi/2)=0cos(π2)=0 and sin(pi/2)=1sin(π2)=1

= (icos(5pi/4)+i^2sin(5pi/4))(icos(5π4)+i2sin(5π4))

= -sin(5pi/4)+icos(5pi/4)sin(5π4)+icos(5π4)

= -1/sqrt2-i1/sqrt212i12