A complex number can be written in polar form in two ways - either as r*e^(itheta)r⋅eiθ or as rcostheta+irsinthetarcosθ+irsinθ.
Hence,
e^((5pi/4)i)=cos(5pi/4)+isin(5pi/4)e(5π4)i=cos(5π4)+isin(5π4) and
e^((pi/2)i)=cos(pi/2)+isin(pi/2)e(π2)i=cos(π2)+isin(π2)
Hence, e^((5pi/4)i)*e^((pi/2)i)e(5π4)i⋅e(π2)i
= (cos(5pi/4)+isin(5pi/4))*(cos(pi/2)+isin(pi/2))(cos(5π4)+isin(5π4))⋅(cos(π2)+isin(π2))
= (cos(5pi/4)+isin(5pi/4))*(0+i)(cos(5π4)+isin(5π4))⋅(0+i)
as cos(pi/2)=0cos(π2)=0 and sin(pi/2)=1sin(π2)=1
= (icos(5pi/4)+i^2sin(5pi/4))(icos(5π4)+i2sin(5π4))
= -sin(5pi/4)+icos(5pi/4)−sin(5π4)+icos(5π4)
= -1/sqrt2-i1/sqrt2−1√2−i1√2