How do you multiply e^(( 5 pi )/ 8 i) * e^( 3 pi/2 i ) in trigonometric form?

1 Answer
Mar 13, 2018

The answer is =1/2((sqrt(2+sqrt2))-i(sqrt(2-sqrt2)))

Explanation:

Apply Euler's Identity

e^(itheta)=costheta+isintheta

e^(5/8pii)=cos(5/8pi)+isin(5/8pi)

e^(3/2pii)=cos(3/2pi)+isin(3/2pi)

cos2theta=2cos^2theta-1=1-2sin^2theta

costheta=sqrt((1+cos2theta)/2)

sintheta=sqrt((1-sin2theta)/2)

cos(5/8pi)=sqrt((1+cos(10/8pi)/2))

cos(10/8pi)=cos(5/4pi)=cos(pi+1/4pi)

=cospicos(1/4pi)-sin(pi)sin(1/4pi)

=-1*sqrt2/2-0

=-sqrt2/2

cos(5/8pi)=sqrt((1-sqrt2/2)/2)=(sqrt(2-sqrt2))/(2)

sin(5/8pi)=sqrt((1-sin(10/8pi)/2)

sin(10/8pi)=sin(5/4pi)=2*-sqrt2/2=-sqrt2

sin(5/8pi)=sqrt((1+sqrt2/2)/2)=1/2sqrt(2+sqrt2)

e^(3/2pii)=cos(3/2pi)+isin(3/2pi)=0-i

And finally,

e^(5/8pii)*e^(3/2pii)=((sqrt(2-sqrt2))/(2)+i1/2sqrt(2+sqrt2))*(-i)

=1/2(sqrt(2+sqrt2))-i1/2(sqrt(2-sqrt2))