As eiθ=cosθ+isinθ, we have
e9π4i=cos(9π4)+isin(9π4) and
eπ2i=cos(π2)+isin(π2)
Hence e9π4i⋅eπ2i=(cos(9π4)+isin(9π4))(cos(π2)+isin(π2))
= cos(9π4)(cos(π2)+isin(π2))+isin(9π4))(cos(π2)+isin(π2))
= cos(9π4)cos(π2)+icos(9π4)sin(π2))+isin(9π4)cos(π2)+i2sin(9π4)sin(π2))
= cos(9π4)cos(π2)+icos(9π4)sin(π2))+isin(9π4)cos(π2)−sin(9π4)sin(π2))
= (cos(9π4)cos(π2)−sin(9π4)sin(π2))+i(sin(9π4)cos(π2)+cos(9π4)sin(π2))
= cos((9π4)+(π2))+isin((9π4)+(π2))
= cos(11π4)+isin(11π4)
= e11π4