How do you multiply e9π4ieπ2i in trigonometric form?

1 Answer
Sep 26, 2016

As eiθ=cosθ+isinθ, we have

e9π4i=cos(9π4)+isin(9π4) and

eπ2i=cos(π2)+isin(π2)

Hence e9π4ieπ2i=(cos(9π4)+isin(9π4))(cos(π2)+isin(π2))

= cos(9π4)(cos(π2)+isin(π2))+isin(9π4))(cos(π2)+isin(π2))

= cos(9π4)cos(π2)+icos(9π4)sin(π2))+isin(9π4)cos(π2)+i2sin(9π4)sin(π2))

= cos(9π4)cos(π2)+icos(9π4)sin(π2))+isin(9π4)cos(π2)sin(9π4)sin(π2))

= (cos(9π4)cos(π2)sin(9π4)sin(π2))+i(sin(9π4)cos(π2)+cos(9π4)sin(π2))

= cos((9π4)+(π2))+isin((9π4)+(π2))

= cos(11π4)+isin(11π4)

= e11π4