How do you multiply e9π8ieπ2i in trigonometric form?

1 Answer
Dec 30, 2016

e9π8ieπ2i=sin(π8)icos(π8)

Explanation:

Using Euler's formula
XXXe9π8i=cos(9π8)+isin(9π8)

XXXXX=cos(π+π8)+isin(π+π8)

XXXXX=cos(π8)+i(sin(π8))

XXXXX=cos(π8)isin(π8)

and
XXXeπ2i=cos(π2)+isin(π2)

XXXXX=0+i1

XXXXX=i

Therefore
XXXe9π8ieπ2i=[cos(π8)isin(π8)]i

XXXXXXX=icos(π8)(1)sin(π8)

XXXXXXX=sin(π8)icos(π8)