How do you multiply eπ12ieπi in trigonometric form?

1 Answer
Dec 11, 2017

The answer is =(2+6)4+i(26)4

Explanation:

We know that

eaeb=ea+b

cos(a+b)=cosacosbsinasinb

sin(a+b)=sinacosb+sinbcosa

Therefore,

eπ12ieiπ=e1312iπ

According to Euler's Identity

e1312iπ=cos(1312π)+isin(1312π)

But,

1312π=34π+13π

Therefore,

cos(1312π)=cos(34π+13π)=cos(34π)cos(13π)sin(34π)sin(13π)

=(22)(12)(22)(32)

=(2+6)4

sin(1312π)=sin(34π+13π)=sin(34π)cos(13π)+cos(34π)sin(13π)

=(22)(12)+(22)(32)

=(26)4

So,

e1312iπ=(2+6)4+i(26)4