How do you multiply eπ3ie3π2i in trigonometric form?

2 Answers
May 10, 2018

sin(11π6)+isin(11π6)

Explanation:

A number given a reiθ can be written as r(cosθ+isinθ)

r1(cos(θ1)+isin(θ1))r2(cos(θ2)+isin(θ2))=r1r2(cos(θ1+θ2)+isin(θ1+θ2))

r1r1=11=1
θ1+θ2=π3+3π2=11π6

sin(11π6)+isin(11π6)

e11π6i

May 10, 2018

The answer is =3212i

Explanation:

This is another point of view.

By Euler's relation

eiθ=cosθ+isinθ

I2=1

eπ3i=cos(π3)+isin(π3)=12+32i

e32πi=cos(32π)+isin(32π)=0i

Therefore,

eπ3ie32πi=(12+32i)(I)

=12i+32

=3212i