How do you multiply eπ4ie3π2i in trigonometric form?

1 Answer
Mar 2, 2018

The answer is =22(1i)

Explanation:

Apply Euler's Identity

eiθ=cosθ+isinθ

i2=1

Therefore,

eπ4i=cos(π4)+isin(π4)=22+i22=22(1+i)

e32πi=cos(32π)+isin(32π)=0i

So,

z=eπ4ie32πi=22(1+i)(i)=22(ii2)

=22(1i)

Verification

z=(cosϕ+isinϕ)=22(1i)

cosϕ=22

sinϕ=22

ϕ=π4, [2π]

z=eπ4ie32πi=e(π4+32π)i=e74πi=e14πi